• Modeling and Simulation of Complex Molecular Systems

Modeling the eletrical double layer

This project aims modeling the electrical double layer formed by dissolved ions near charged surfaces such as electrodes, membranes, macromolecules.

With a few exceptions [1,4], we used the implicit solvent model of electrolytes, where water is treated as a dielectric continuum and ions are charged hard spheres.

We considered double layers at low reduced temperatures (low temperature or low dielectric constant) [2-4,9,]. selective adsorption at highly charged interfaces [7,8,10,15], polarizable electrodes [6,12-14], and multivalent ions [5,7-10,12,15], and ions of different diameters [7,8,10,15].

 toc dl

[15] M. Valiskó, T. Kristóf, D. Gillespie, D. Boda. A systematic Monte Carlo simulation study of the primitive model planar electrical double layer over an extended range of concentrations, electrode charges, cation diameters and valences.   AIP Advances 8(2):025320, 2018.

[14] T. Nagy, D. Henderson, D. Boda. Correction to ``Simulation of an electrical double layer model with a low dielectric layer between the electrode and the electrolyte. J. Phys. Chem. B, 119(35):11967-11968, 2015.

[13] T. Nagy, D. Henderson, D. Boda. Simulation of an electrical double layer model with a low dielectric layer between the electrode and the electrolyte. J. Phys. Chem. B, 115(39):11409-11419, 2011.

[12] T. Nagy, M. Valiskó, D. Henderson, D. Boda. The Behavior of 2:1 and 3:1 Electrolytes at Polarizable Interfaces. J. Chem. Eng. Data, 56(4):1316-1322, 2011.

[11] D. Henderson and D. Boda. Insights from theory and simulation on the electrical double layer. Phys. Chem. Chem. Phys., 11(20):3822-3830, 2009.

[10] M. Valiskó, D. Gillespie, and D. Boda. Selective adsorption of ions with different diameter and valence at highly-charged interfaces. J. Phys. Chem. C, 111(43):15575-15585, 2007.

[9] M. Valiskó, D. Henderson, and D. Boda. The capacitance of the electrical double layer of valence-asymmetric salts at low reduced temperatures. J. Mol. Liquids, 131-132:179-184, 2007.

[8] D. Gillespie, N. Valiskó, and D. Boda. Density functional theory of the electrical double layer: the RFD functional. J. Physics-condensed Matter, 17(42):6609-6626, 2005.

[7] M. Valiskó, D. Henderson, and D. Boda. Competition between the effects of asymmetries in ion diameters and charges in an electrical double layer studied by Monte Carlo simulations and theories. J. Phys. Chem. B, 108(42):16548-16555, 2004.

[6] D. Boda, D. Gillespie, W. Nonner, D. Henderson, and B. Eisenberg. Computing induced charges in inhomogeneous dielectric media: Application in a Monte Carlo simulation of complex ionic systems. Phys. Rev. E, 69(4):046702, 2004.

[5] D. Boda, W. R. Fawcett, D. Henderson, and S. Sokolowski. Monte Carlo, density functional theory, and Poisson-Boltzmann theory study of the structure of an electrolyte near an electrode. J. Chem. Phys., 116(16):7170-7176, 2002.

[4] D. Boda and D. Henderson. The capacitance of the solvent primitive model double layer at low effective temperatures. J. Chem. Phys., 112(20):8934-8938, 2000.

[3] D. Boda, D. Henderson, K. Y. Chan, and D. T. Wasan. Low temperature anomalies in the properties of the electrochemical interface. Chem. Phys. Lett., 308(5-6):473-478, 1999.

[2] D. Boda, D. Henderson, and K. Y. Chan. Monte Carlo study of the capacitance of the double layer in a model molten salt. J. Chem. Phys., 110(11):5346-5350, 1999.

[1] D. Boda, K. Y. Chan, and D. Henderson. Monte Carlo simulation of an ion-dipole mixture as a model of an electrical double layer. J. Chem. Phys., 109(17):7362-7371, 1998.