A dæmon for steady-state diffusion through membranes

Zoltán Ható¹,², Tamás Kristóf¹
¹University of Pannonia, ²University of Paderborn

VII. Jahrestagung der Boltzmann-Zuse-Gesellschaft
• Describing adsorption and diffusion phenomena are critical to design efficient separation methods
• Molecular simulation has become a very powerful tool to investigate such phenomena
• Focus on simulating steady-state membrane transport
• Crucial points: method to handle the dynamics of the system, method to ensure and maintain the driving force at microscopic level
Methods

- External field MD + PBC (external work on the system -> temperature coupling is essential) [1]
 - Self-adjusting plates technique (feed side reservoir problems) [2]
- Gradient relaxation MD (weakness: transient nature) [3,4]
- DCV-GCMD (coupling stochastic to deterministic) [5]
- NP+LEMC (diffusion constant is input parameter) [6]
- DMC+LEMC (MD like trajectory fragments) [7]
- Kinetic MC (rate coefficients required) [8]

Problems to solve

- Depletion/accumulation of particles in the bulk zones
 - we cannot simulate real size fluid reservoirs
 → reinjection/removal is a must

- Preservation of the steady-state flux of transporting particles
 - no sudden ’near membrane’ molecule appearance/annihilation
Pressure-tuned, boundary-driven MD

Features:

• Simplicity and connection to macroscopic physical picture of gas transport through membrane

• Pressure is the property that can be controlled relatively simply: partial pressure for each component on the input side and total pressure on the permeate side

• Similar to DCV-GCMD but insertion/deletion steps allowed in the boundary regions only (governing factor is pressure; not a real thermodynamic ensemble)

Pressure-tuned, boundary-driven MD

Arrangement of a PBD-MD simulation box

\[
\left| \left(\frac{N_{\text{control cell}} \pm 1}{N_{\text{control cell}}} \right) \cdot p_{\text{control cell}} \right| - p_{\text{target}} < |p_{\text{control cell}} - p_{\text{target}}| \]
• 5000 consecutive MD steps (time step: 2 fs)
 \(N_{\text{control cell}} \) and \(p_{\text{control cell}} \) collected as averages

• Insertion/deletion in regions far from the membrane
 check pressure (and avoid ’hard-core’ overlaps)

• Berendsen **thermostat**
 key point in these simulations,
 must preserve streaming velocities
Simple test cases

• Silicalite-1 membrane
 (rigid framework, built up from SiO$_4$ tetrahedrals,
 0.8 nm zig-zag and linear channels)

• Gases: CH$_4$, CO$_2$, H$_2$, and N$_2$
 (single component and equimolar mixtures)

• Adsorption & steady-state diffusion

• Molecular models:
 gases: single site shifted and cut LJ
 silicalite-1: O interactoin sites only [1]

Simple test cases

- quantifying the adsorption and diffusion

\[S_E = \left(\frac{q_{CO_2}}{q_i} \right)_{i \neq CO_2} \]
 equilibrium selectivity

\[S_P = \left(\frac{J_{CO_2}}{J_i} \right)_{i \neq CO_2} \]
 permeation selectivity
 (dynamical selectivity)

\[R_P \]
 idealized permeation ratio

\[P = J \cdot (\Delta p / \Delta x)^{-1} \]
 permeance data
Results

Steady-state concentration profiles

(a) pure CH$_4$ T=338 K $p=200$ kPa, vacuum on the permeate side

(b) CO$_2$-N$_2$ mixture at 408 K with $p = 140$ kPa (70 kPa for both components) on the feed side and vacuum on the permeate side,

(c) CO$_2$-H$_2$ mixture at 303 K with $p = 140$ kPa (70 kPa for both components) on the feed side and $p = 100$ kPa on the permeate side.

(For example, 0.1 mol dm$^{-3}$ means ~100 particles in our typical feed side reservoir with length of ~40 nm.)
Results

CO\textsubscript{2}-H\textsubscript{2}:

$\rho_{\text{permeate}} = 100$ kPa

T / K
ls1 branch

- Implementing the method in ls1

 Martin Horsch and coworkers (in progress)

- Molecular models from Jadran Vrabec and coworkers (available)

- Take advantage of the capabilities of ls1 and OCuLUS cluster (PC² Paderborn)

 • larger number of molecules
 • speed
 • parallelization
 • variability (other thermostats)
THANK YOU FOR YOUR ATTENTION!

The authors gratefully acknowledge the support of the Hungarian National Research Fund (OTKA NN113527) in the framework of ERA Chemistry and the financial and infrastructural support of the Hungarian State and the European Union under TÁMOP-4.2.2.B-15/1/KONV-2015-0004